

FISHERIES AFSC, MML SWFSC, MMTD

California sea lions: Environmental impacts on population status and trend

J. Laake, M. Lowry, R.DeLong, S.Melin

19 April 2016

Terms of Reference Question

5. Analysis and modeling of ecosystem-level processes

California Sea
Environment — Lion Survival &
Population Status

California Sea Lion Survival

Data Collection

- A branding/tagging program has been conducted on San Miguel Island since 1987
- 200-500 pups have been weighed, marked with a unique number and released each year.
- Resighting has been conducted annually at San Miguel since 1990 and at Ano Nuevo since 1996.
- Reported dead recoveries have been recorded since 1987.

Survival Analysis

- Release-resight-recovery capture-recapture models were fitted to the encounter histories.
- Best fixed effect survival model included:
 - Age (cubic spline), sex and their interaction
 - Initial pup weight influencing pup and yearling survival
 - Annual variation in survival for pups, yearlings, ages
 2&3 and for ages 4+

Survival Explanatory/Predictive Model

- Fit linear mixed effects model to sex- and agespecific survival estimates from 1987-2014.
- Fixed effects: average pup weight (+), sea surface temperature (-) and sea lion abundance (-). Differential effects with age.
- Random effects: annual variation for pups, yearlings, age 2+.

Survival Explanatory/Predictive Model

- From fitted model predict survival for each sex and age for 1975-2014 from annual pup weight and SST data and sea lion abundance estimate.
- Use survival predictions to reconstruct the population which is the next step. Iterate.

California Sea Lion Population Status

Sea Lion Pup Counts

Sea Lion Population Reconstruction

 Use total U.S. pup counts from 1975-2015 and survival estimates to reconstruct population.

$$N \downarrow a+1, y+1 = N \downarrow a, y S \downarrow a, y$$

$$3600 = 6000 \cdot 0.6$$

Sea Lion Population Reconstruction

Age	1975	1976	1977	1978	1979	 2011	2012	2013	2014
0									
		<i>N</i> ↓0	<i>N</i> ↓0	<i>N</i> ↓0	<i>N</i> ↓0	<i>N</i> ↓0	<i>N</i> ↓0	<i>N</i> ↓0	<i>N</i> ↓0
		197	,197	,197	,197	,201	,201	,201	,201
		,19	<i>N</i> 12	8	9	1	2	3	4
1		76	,19	<i>N</i> ↓3					
2			77	,19	<i>N</i> .J4				
3				78	,19				
4					79				
23	<i>N</i> ↓1	<i>N</i> ↓1	<i>N</i> ↓1	<i>N</i>	<i>N</i>	<i>N</i> ↓2	<i>N</i> . ↓2	<i>N</i> \$2	<i>N</i> ↓2
24	975	976	977	978	979	011	012	013	014

A Fisheries | Page 14

Population Status

- Fit generalized logistic growth difference equation with variable growth rate to annual total abundance.
 - $N \downarrow t+1 = N \downarrow t + N \downarrow t (R+b*SST \downarrow t)(1-N \downarrow t/K) \uparrow z$ - $H \downarrow t$
- From fitted model compute Maximum Net Productivity Level (i.e., population size yielding largest increase) and 2014 population status.
- A population which is larger than MNPL is said to be at its Optimum Sustainable Population (OSP) level.

Population Growth

- 1) Population growth ratedeclines with increasing SST;+2 degree anomaly ~7%decline
- 2) Carrying capacity K= 250-280K
- 3) MNPL = 156-182K
- 4) 2014 population > MNPL. Official status to be determined after review process and publication.

Realized Gross Birth Rate

- 1) Birth rates increased initially as DDT contaminant levels decreased.
- 2) Birth rates declined with increasing SST.
- 3) Birth rates declined as population reached carrying capacity.

Strengths, Challenges and Solutions

Strengths

- ▶ 4 decade time series
- Environmental linkage
- Sex-age trends

Challenges

- ► Maintaining long term data
- Incorporating prey data
- ► Island differences

Solutions

- Collaborative funding
- Fisheries biologists
- New model development

